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A dynamical model of a liquid with momentum anisotropy (LMA) is constructed using the ideas and principles of the momentum 
mechanics of continuous media. The equations for a lubricating layer are derived in the thin-layer approximation. Shear flow 
between parallel surfaces is considered. It is shown that a liquid with momentum anisotropy exhibits a dimensional effect in its 
viscosity and a kinematic ordering in the orientation of the long axes of the molecules. The approach which has been developed 
is promising for an adequate description of the theology of thin boundary layers which are formed dose to a solid surface and 
determine the fundamental friction laws. © 1997 Elsevier Science Ltd. All rights reserved. 

Experiments cow¢incingly show that many liquids form boundary (or presurface) layers with a thickness 
of -20--50 rim, in which the molecules are orientationally ordered around a solid surface. In the opinion 
of the Derjaguin school [1-4], certain liquids close to a solid surface form a new phase--an epitropic 
liquid crystal, aml, moreover, it has been shown in [1-4] that the effect of a solid surface on the liquid 
properties extends up to distances of several microns. 

The interest in this problem is due to the fact that the phenomena occurring in boundary layers 
determine the physical basis of many important technological processes such as flotation, coagulation, 
the stability of disperse and colloidal systems, friction, etc. The latter phenomenon is of interest in its 
own right and is deserving of special consideration. It is customary to associate the carrying capacity 
of friction points with the dynamics of a Newtonian fluid in a wedge-shaped gap (the oily wedge effect) 
in which a dynamic disjoining pressure arises. The adhesive forces between the liquid and the solid 
surface are substantial in narrow gaps of the order of a micron and less, in which the Navier-Stokes 
equations do not hold. However, the problem of taking account of their effect on the interaction of 
solid surfaces in a quantitative manner has not yet been solved. 

For this reason, the fundamental issue on the nature of the lubricating action of oils and the role of 
liquid crystal-like structures in their microrheology again arises. It is known that smectic liquid crystals 
also occur in substances which have long been used as additives in lubricating oils and greases. These 
are surfactants: colloidal micelle-forming solutions of amphiphilic compounds which yield layer 
structures. The salts of fatty acids may serve as an example. 

Hence the development of a hydrodynamic theory of boundary layers, which would enable us to 
describe their rheological behaviour and the kinematic orientation induced by the solid surface ade- 
quately, is urgent. Such a theory can be constructed using the ideas and principles of the momentum 
mechanics of a continuous medium [5-7] and, in particular, of a model of a liquid with momentum 
anisotropy. 

1. THE EQUATIONS OF MOTION 

The equations of motion of a liquid with momentum anisotropy (LMA) can be written in the form 

d__pp = dv  i 
dt - P v t ' t '  P-'-~t-=t~i*.t  +Pf i  

(1.1) dS, 
P--~-t = ~ti* k - oom~,~  + pmi 

Here Si = Ja ~k ,  Oa and I~ are the asym.metric force and torque stress tensors, p]~ and p m  i are the 
densities of the bLdk forces and moments, vi, Di and Jv,,are the translational velocity, the intrinsic angular 
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velocity and the moment of inertia of an elementary part of the medium, and einm is the Levi--Civita 
tensor. 

In momentum, liquids as in liquid crystals, the molecules themselves, which rotate about their own 
centres of inertia, are the carriers of the intrinsic angular momentum Si. Calculations show that the 
spin angular momentum only plays an important role at very high deformation rates (high acoustic 
frequencjes)f and turns out to be negligibly small at the usual deformation rates. The intrinsic angular 
velocity lit in a LMA is made up of the velocity of rotation of the anisotropic direction i)]" (of the local 
.axis of symmetry of the liquid at a given point L 3 and the velocity of rotation about the axis of anisotropy 

. .  .+ dL,n ~, , ~ , = ~ , + a r .  ~, =L.- - -~- ; . , .  ~ = L , ~ ,  L,L.=I (1.2) 

The rotational degrees of freedom of a LMA are described by three quantities, that is, by two 
components of the vector L i and the parameter qZ 

In momentum mechanics (the Cosserat model with free rotation), the intrinsic angular velocity i~i 
is an independent quantity which does not depend on ~ ~ V x v/2, which describes the rotation of a 
part of the medium as a whole. 

The local deformation of a part of the medium in momentum hydrodynamics is characterized by two 
tensor quantities 

hi, = ~2(ui. ~ +v , . i ) ,  ~ =t~i. k (1.3) 

Material relations, that is, the laws associating the dynamic quantities oa, liu, and the kinematic 
quantities duo r/k and the ( ~ i -  thi) quantities for a LMA can be obtained in the same way as in the case 
of liquid crystals [8] using the first and second laws of thermodynamics, the principle of invariance to 
rigid rotation, the Onsager principle, the conditions of material symmetry as well as firmly established 
experimental data concerning the rheological properties of the boundary layers. In the case of low 
deformation rates (apart from linear terms in the expansion in terms of e/k,/~/k), one can write 

°t~kl = Ai,t ]{,,~) ~.'.+/~klJ( ~ -  6))j (1.4) 

I.t i, = O it,,,, , i',,,, + Lili k 

Here, A[/kl/= A[iklm,,~,,,,,j; A(ik)j = A(ik),~F-,,mj, ( ik)  and [ik] are the symbols of symmetrization and of 
antisymmetfmation, andAuo~ and Ouo~ are the shear viscosity and torque viscosity tensors. The explicit 
form of these tensors can be found if the material symmetry of the anisotropic liquid is taken into account. 

We assume that the LMA locally (at each point) possesses cylindrical symmetry (Li is the unit vector 
along the axis of symmetry) and, in addition, that it has a plane of mirror symmetry perpendicular to 
the axis of cylindrical symmetry. In other words, we assume that Li and -L i  are physically indistin- 
guishable. In this case, the tensors Aanm and O~,,,, can be represented in terms of the dyads L i L k and 
the absolute tensors ~Su, and e,,~. In all, each tensor will contain eight independent parameters which 
can be interpreted as the coefficients of viscosity under certain flow conditions. Finally, the material 
relations for the LMA have the form 

(lit = --P~)ik +al bi t+~(a2 +a6)enk LnLi + (a2 - a 6  )ein L . L t  + 

+(a3LiL k + a48it )bnm LnL m + (ash)it + a4LiL k ) ban + 

+ a T ( l i - ~ ) j e j i  t + 1 ( o  6 + a a ) L i N  k + 2 ( a 6 - a a ) L t N  i (1.5) 

1 
°'[ikl =--2 a6(bln LaLi -ein" L n L k ) + a T ( ~ i - f l ) j £ j i  t + 2 a s ( L i N t  - LkNi )  

I.ti~ = O  I kit+ (0  2 +O6)/ ' ,a L . L  i +-~(O 2 -O6)/'in LnL t + 
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+(03LiL,  + O4~)ik ) r.~ LmLn + (04LiLjt + 05~ik ) rn. + 

+07( r . i  L~L k + r~ L~Li)+Os r , i+ LAtk 

!1 k = (agSk, + atoLkL, n i ) 

n i Lj ~ } . i -  ~'~j L). i , N i dLi = = + L n (on Einra 
dt 

By virtue of the mirror symmetry, the tensors A/o~ and f~/k,~ only contain the even dyads (L.,Lk, 
L' ,LkLmL~) and do not contain the odd dyads (L i ,L iL k ,L m ) .  

In the case of incompressible media, Eq. (1.1), together with the material relations (1.5), form a closed 
system of seven equations for the seven quantities (vi, Li,  fV, p ) .  In the case of compressible media, the 
density p is added to the required quantities and the equation of state of the medium is added to the 
conservation laws. 

The system of equations obtained, as a special case, contains the equations of momentum hydro- 
dynamics [6, 7]. They can be obtained if the tensors A/o,~ and O ~ , ,  are averaged over all orientations 
and account is taken of the fact that 

( L i L k ) = - ~  i*, (LiLf lmLn) : (8Of)rim +~)imS~ + S i n $ ~ )  

They also contain the equations of an anisotropic liquid (the Ericksen-Leslie model). Actually, if 
the spin moment: Si, the bulk moment p m  i and the viscous torque stresses are neglected in the last 
equation of (1.1), that is, if it is assumed that 

Si =0, pmi=0,  lai~=0 

then the force stress tensor becomes symmetric and the last two equations of (1.1) can be written in 
the form of the s.rstem 

do t 
P-~- t  : O.k).k +P/,~ 

dL, 
- - + L . ( O , . E i ~  = ~ , ( L i ~ L k L ~ - b i ~ L ~ )  , k =  a6 
dt 2a 7 + a 8 

which was propo~;ed for the first time by Ericksen in the case of a momentum-free anisotropic liquid. 

2. THE LMA EQUATIONS FOR A L U B R I C A T I N G  LAYER 

Since, later, we: primarily have hydrodynamic frictional problems in mind, it is worth obtaining the 
equations of motion for a lubricating layer. It is seen from (1.5) that taking account of the orientational 
ordering of the molecules of a liquid leads to non-linear material relations. 

For this reason, the equations of motion turn out to be non-linear and very complex even in the case 
of creeping flows. 

We introduce the dimensionless coordinates ~, )7, £ and 

x = f f ,  y=~y,  z=/'£, t = - - t  (2.1) 
U 

the dimensionless components of the velocity ~ P, ff and the dimensionless time p 

P U2 
u = U l ~ ,  v =V:Y .  w = U l ~ ,  P=Re---- T (2.2) 

Here, l is the mean curvature of the solid surfaces, 8 is the thickness of the layer, Ui and V/are the 
longitudinal and transverse velocities of the lower (i = 1 ) and upper (i = 2) solid surfaces, respectively, 
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Re = Ullp/g  is the Reynolds number, e = 5/l, and g is the characteristic shear viscosity of the liquid 
which may correspond to one of the eight coefficients (al . . . .  , as) or may be a combination of them. 

A dimensionless similarity number may be constructed 

A = 84g / 0 (2.3) 

which is analogous to the Reynolds number. Here, O is the characteristic momentum viscosity of the 
fluid. In obtaining the equations of motion for a lubricating layer it is assumed that 

l 1 / g  
c. l, c-- 7 (2.4) 

If account is taken of (2.1), (2.3) and (2.4) in the material relations and the equations of motion, 
then, in the zeroth approximation, that is, when the terms O(e) are neglected, we can obtain 

2. 
at ay 

_a_pp+ ao~, 
ax ay 

ao~y aw au Du aw i3p+ = , + =0 
-aS Dr at ax-&-y+-g-z 
ala~, _ agy,., _ 3~tz~-----2 - o3 = 0 ay °t = 0, ay 02 = 0, az 

O z y = l ( b ; L i L 3  + 4a3LIL~L3" , g  +-~ ( b l a U  1 + biL~ +b2~" 2 + 4 a 3 / ~ )  ~ 

ol = -Tb~.' LIL3 ~y b;/~ b 3 

au 1 

b l = 2 a  1+2a 7, b ~ = a  2+a  8+2a 6, b ~ = a  s + a  6, b 3=2a7+as  

In Eqs (2.5) we have again changed from dimensionless quantities to dimensional quantities and here 
the previous notation is retained for the pressure, the components of translational velocity and the force 
and momentum stress tensors. In the case of the intrinsic angular velocity vector in the thin-layer 
approximation, we have (to accuracy O(e)) 

aLto (2.6) t~i =/-~ T c , .  

3. BOUNDARY CONDITIONS 

The boundary conditions have to be specified in order to solve the equations of motion of a liquid 
with momentum anisotropy. Using the "no-slip" hypothesis, the translational velocity field v on the solid 
surface s can be written as in conventional hydrodynamics 

v(r, t)l, = V, (3.1) 
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where V, is the translational velocity of the motion of the solid surface s. The boundary conditions for 
the vector L(r, t) :must reflect the mechanism of the interaction between the LMA and the solid surface. 
Since the details of this mechanism are far from clear, we shall start out in the first approximation from 
the assumption that the long axes of the molecules are "rigidly" orientated on the solid surface. In this 
c a s e  

L(r, t)l, = L, (3.2) 

where L~ is the vector describing the orientation of the long axes of the molecules on the solid surface. 
Additionally, we assume that the initial translational velocity field and the initial orientation of the long 
axes of the molecules are specified, that is 

v(r, t)lt.0 = V0(r), L(r, t)l~0 = Lo(r) (3.3) 

Boundary conclitions (3.1)-(3.3) enable one, in principle, to integrate the equations of motion of a 
LMA and to determine the translational velocity field v(r, t) and the orientation of the long axes of the 
molecules L(r, t). 

Other assumptions are made in the literature concerning the theory of microstructural liquids with 
regard to the mechanism of the interaction between the liquid molecules and a solid surface, and other 
forms of boundary conditions have been formulated [9, 10]. 

.i. A LAYER OF LMA BETWEEN PARALLEL PLATES 

As an illustration of the rheological effects of a LMA we will consider its flow between parallel plates. To fix 
our ideas, we shall :Lssume that the lower plate is fixed while the upper plate is spaced a distance h from the lower 
plate and moves along tbex axis at a constant velocity U. The angle O = Ofy, t) is measured from they axis. Allowing 
for the symmetry o:f the flow, we can then write 

v = u (y )e  x, L = exsinO + eycosO (4.1) 

On substituting (4.1) into the equations of motion (2.5), we conclude that p = const. Without loss in generality 
it may be assumed 'thatp = O. We now introduce the scales for the dimensional quantities 

[n] = n±, [u] = u, [o] = 0 i, [y] = h, [t] = h/U, [o] = Un.tlh 
(4.2) 

~± = (b~ + b ~)14, nN = (bl + b ~)14 

The system comprising the equations of motion and the material relations and the boundary conditions and the 
initial conditions are then rewritten in the form 

a(_ a~ ~'/ 
~ ' [  nl ~"~- q2 ~ =0 (4.3) 

a ¢:a%) _ 

ul)= 0 = O, uly= I --- l, Ult= 0 = u (y ,O)  (4 .5 )  

Here 

~ly--0=~0, ~ly=l =~h, ~lt=0 = ~ ( y , O )  

0=0, sin2~+cosz~, ~l=cos2~+~,sinZ~+~+ sin2~c°sz~ 

1 - 
~2 = ~[ (~co  - ~t  + 1) cos2 ~ + (~c0 + ~ l  - 1) sin2 ~] 

rl, ~+ G+ Tl~ O, ,4 2 = h2n± 
fix n± q± ' 

n+ = a3, rico = b3 

Henceforth, the bar over dimensionless quantities is omitted. On integrating Eq. (4.3) with respect toy, we obtain 
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~u 0¢  
ql - ; - -  ri2 = x( t )  (4.6) 

oy  

where x depends on time if the long axes of the molecules "twist" with respect to the solid surface. In the ease 
when they are rigidly clamped in accordance with condition (4.5), x is independent of t. 

Solving Eq. (4.6) for Ou/~y and substituting the result into (4.4), we obtain an equation for determining cb0,, t) 

 -to j +,, Ltm, :o (4.7) 

When 

r i l l = i ,  0 ,=1,  r i+=0  

the solution of Eq. (4.7) can be obtained in analytic form 

u= ~ [ 4ay  - sinh(cty) + A(I - cosh(cty))] 
2(2a + q~A) L rlo j 

od 
~ =~(y ,0 )4  _ [l-cosh(ay)-Asinh(oty)] (4.8) 

2~t + qto~ 

¢ ( 0 ,  0) = ¢o ,  ¢ ( h ,  0) = ¢bh 

l - r i ¢o /4  
o ~  ly= o = x = 1 - [r i= tanh(a  / 2)]  / ( 2 a )  

a 2 = A 2 r i = ( l - q = / ,  A=l-c°sha 
t 4 )  sinha 

Profiles of the intrinsic angular velocity of the liquid ~ = ~ /3 t  as a function of the parameterA through a cross- 
section of the layer when "q= = 0.5 are shown in Fig. 1. I t  is seen that in thick layers (A = 20) the flow in the centre 
of the stream approximates to the classical case: the liquid particles rotate at a constant angular velocity, equal to 
the angular velocity of rotation, ¢b, of a part of the medium as a whole. The orientational action of the solid surfaces 
manifests itself solely in a narrow boundary layer in this case. Its thickness can be estimated from the law of the 
asymptotic approach of f / t o  ¢b. I t  follows from the second equality of (4.8) that 

t~m,~ = ~ -  exp(-et/2) 

If we limit ourselves to an accuracy of 0.1 and assume that a = 4, we can obtain 

h=4.[ O-l-- 
~q.Lqo ( 1 - ric0 / 4) 

that is, the thickness of the boundary layer of the liquid is determined by its rhcological properties. 

L]25 L~73" 

f15 
0 a5  ~/ 1 o 

Fig. 1. 

10 A 20 

Fig. 2. 
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As the thickness of the layer decreases (as the parameter A becomes smaller), the orienting action of the solid 
surfaces propagates throughout the bulk of the layer; the boundary layers overlap and the angular velocities of 
rotation of the axe.,; of anisotropy are "frozen", that is, t2 ~ 0. 

It is also seen from Fig. 1 that the angular velocity of rotation of the liquid particles is a maximum in the middle 
of the layer and decreases smoothly as one approaches the solid surfaces. In particular, it follows from this that 
the coefficient of birefringence of such a layer will decrease smoothly from the solid surface to the middle layer 
[11] which is in complete qualitative agreement with the available experimental data [1--4]. In the given range of 
parameters, the profile of the translational velocity u is only slightly different from a classical linear profile. 

The shear stresses x = t ~ = 0 ,  acting on the solid surface at different values of the rotational viscosity are shown 
in Fig. 2. These graphs show that a layer of a LMA exhibits a dimensional effect: in wide gaps when A ~ oo, we 
have !~ ~ fix(1 - rlJ4) and in narrow gaps, when A ~ 0, the effective viscosity of the liquid ~ ~ 112.. The dimensional 
effect on viscosity is greater the greater the rotational viscosity TI~. 

In the general c~tse, that is, when account is taken of the anisotropy of the shear and momentum viscosities, 
both the intrinsic angular velocity as well as the translational velocity of the liquid turn out to be complex functions 
of time. An analysis of their effect on the basic rheological characteristics of a layer requires special consideration. 

This research was carried out  with financial support from the Russian Foundation for Basic Research 
(94-01-00450-a).  
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